API Reference
from multicons import MultiCons
multicons.MultiCons
Bases: BaseEstimator
MultiCons (Multiple Consensus) algorithm.
MultiCons is a consensus clustering method that uses the frequent closed itemset mining technique to find similarities in the base clustering solutions.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
consensus_function |
str or function
|
Specifies a consensus function to generate clusters from the available instance sets at each iteration. Currently the following consensus functions are available:
To use another consensus function it is possible to pass a function instead
of a string value. The function should accept two arguments - a list of sets
and an optional |
'consensus_function_10'
|
similarity_measure |
str or function
|
Specifies how to compute the similarity between two clustering solutions. Currently the following similarity measures are available:
To use another similarity measure it is possible to pass a function instead of a string value. The function should accept two arguments - two numeric numpy arrays (representing the two clustering solutions) and should return a numeric score (indicating how similar the clustering solutions are). |
'JaccardSimilarity'
|
merging_threshold |
float
|
Specifies the minimum required ratio (calculated from
the intersection between two sets over the size of the smaller set) for
which the |
0.5
|
optimize_label_names |
bool
|
Indicates whether the label assignment of
the clustering partitions should be optimized to maximize the similarity
measure score (using the Hungarian algorithm). By default set to |
False
|
Attributes:
Name | Type | Description |
---|---|---|
consensus_function |
function
|
The consensus function used to generate clusters from the available instance sets at each iteration. |
consensus_vectors |
list of numpy arrays
|
The list of proposed consensus clustering candidates. |
decision_thresholds |
list of int
|
The list of decision thresholds values, corresponding to the consensus vectors (in the same order). A decision threshold indicates how many base clustering solutions were required to agree (at least) to form sub-clusters. |
ensemble_similarity |
list of float
|
The list of ensemble similarity measures corresponding to the consensus vectors. |
labels_ |
numpy array
|
The recommended consensus candidate. |
optimize_label_names |
bool
|
Indicates whether the label assignment of clustering partitions should be optimized or not. |
recommended |
int
|
The index of the recommended consensus vector. |
similarity_measure |
function
|
The similarity function used to measure the similarity between two clustering solutions. |
stability |
list of int
|
The list of stability values, corresponding to the consensus vectors (in the same order). A stability value indicates how many times the same consensus is generated for different decision thresholds. |
tree_quality |
float
|
The tree quality measure (between 0 and 1). Higher is better. |
Raises:
Type | Description |
---|---|
ValueError
|
If |
Source code in multicons/core.py
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 |
|
__init__(consensus_function='consensus_function_10', merging_threshold=0.5, similarity_measure='JaccardSimilarity', optimize_label_names=False)
Initializes MultiCons.
Source code in multicons/core.py
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 |
|
cons_tree()
Returns a ConsTree graph. Requires the fit
method to be called first.
Source code in multicons/core.py
279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 |
|
fit(X, y=None, sample_weight=None)
Computes the MultiCons consensus.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
X |
list of numeric numpy arrays or a pandas Dataframe
|
Either a list of arrays where each array represents one clustering solution (base clusterings), or a Dataframe representing a binary membership matrix. |
required |
y |
any
|
Ignored. Not used, present here for API consistency by convention. |
None
|
sample_weight |
any
|
Ignored. Not used, present here for API consistency by convention. |
None
|
Returns:
Name | Type | Description |
---|---|---|
self |
MultiCons
|
Returns the (fitted) instance itself. |
Source code in multicons/core.py
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 |
|
from multicons import (
build_membership_matrix, in_ensemble_similarity, linear_closed_itemsets_miner
)
multicons.utils
Utility functions
build_membership_matrix(base_clusterings)
Computes and returns the membership matrix.
Source code in multicons/utils.py
65 66 67 68 69 70 71 72 73 74 |
|
in_ensemble_similarity(base_clusterings)
Returns the average similarity among the base clusters using Jaccard score.
Source code in multicons/utils.py
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 |
|
linear_closed_itemsets_miner(membership_matrix)
Returns a list of frequent closed itemsets using the LCM algorithm.
Source code in multicons/utils.py
114 115 116 117 118 119 120 121 |
|
from multicons import consensus_function_10
multicons.consensus
Consensus functions definitions.
consensus_function_10(bi_clust, merging_threshold=None)
Returns a modified bi_clust (set of unique instance sets).
Source code in multicons/consensus.py
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 |
|
consensus_function_12(bi_clust, merging_threshold=0.5)
Returns a modified bi_clust (set of unique instance sets).
Source code in multicons/consensus.py
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 |
|
consensus_function_13(bi_clust, merging_threshold=0.5)
Returns a modified bi_clust (set of unique instance sets).
Source code in multicons/consensus.py
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 |
|
consensus_function_14(bi_clust, merging_threshold=0.5)
Returns a modified bi_clust (set of unique instance sets).
Source code in multicons/consensus.py
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 |
|
consensus_function_15(bi_clust, merging_threshold=0.5)
Returns a modified bi_clust (set of unique instance sets).
Source code in multicons/consensus.py
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 |
|